

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 1797-1800

Tetrahedron Letters

GaCl₃ Promoted one-step α, α -diethynylation and α, α -diethenylation reactions of silyl enol ethers

Ryo Amemiya, Yutaka Miyake and Masahiko Yamaguchi*,[†]

Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan

Received 12 December 2005; revised 5 January 2006; accepted 6 January 2006 Available online 26 January 2006

Abstract—In the presence of GaCl₃ and 2,6-di(*tert*-butyl)-4-methylpyridine, α -monosubstituted silyl enol ethers were α, α -diethynylated with a chlorosilylacetylene in one step. An analogous reaction using a silylacetylene gave α, α -diethenylated ketones. © 2006 Elsevier Ltd. All rights reserved.

Dialkylation at the carbonyl α -position is a useful method to construct quaternary carbon centers.^{1,2} One-step α, α -diethynylation and α, α -diethenylation, however, were not known, although such compounds with highly functionalized quaternary carbons could have various potential uses in organic synthesis. Several stepwise methods were reported: An α , α -diethynylated α -hydroxy ketone was prepared from an α, α -dimethoxyalkanoate and lithium acetylide followed by deacetalization;³ α, α -diethenyl propanoates were obtained by the pyrolysis of 5-methylbicyclo[2.1.0]pentanecarboxylates;⁴ α, α -bis(β -hydroxyethyl)phenylacetonitrile was converted to α, α -diethenylphenylacetic acid by elimination;⁵ α, α -diethenylated thioesters were synthesized by the sequential ethenylation of silvl enol ethers.⁶

Previously, we reported GaCl₃ catalyzed α -ethynylation reaction of α, α -disubstituted silyl enol ethers with chlorotriethylsilylacetylene **2**.⁷ This catalytic α -ethynylation, however, did not proceed with α -monosubstituted silyl enol ethers. Described here is the finding that one-step α, α -diethynylation of such silyl enol ethers takes place under appropriate conditions (Scheme 1). The α, α -diethenylation of silyl enol ethers with triethylsilylacetylene **4** is also described.

As described previously,⁷ the reaction of 6-trimethylsiloxy-5-undecene **1a** (cis:trans = 1:2) and **2** (6 equiv) in the presence of a catalytic or a stoichiometric amount

0040-4039/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.01.025

Scheme 1.

of GaCl₃ in methylcyclohexane at 130 °C gave very small amounts of the ethynylated product, if any. The addition of 2,6-di(*tert*-butyl)-4-methylpyridine (1.0 equiv),⁸ however, gave a considerable amount of α, α -diethynylated ketone. Under an argon atmosphere, a mixture of **1a**, **2** (6 equiv), and GaCl₃ (1.0 equiv) in chlorobenzene was heated at 150 °C for 5 h, and 5,5-bis(triethylsilylethynyl)-6-undecanone **3a** was obtained in 48% yield.⁹ The diethynylation proceeded at the same α -carbon, and the gallium enolates involved in this reaction should be generated in two different modes: (1) transmetalation of silyl enol ether **1a** and GaCl₃; (2) deprotonation of the ethynylated ketone **6a** with GaCl₃ (Scheme 2).⁸

The reaction could be applied to several silyl enol ethers derived from acyclic and cyclic ketones, and α, α -diethynylated ketones **3a–i** were obtained in modest yields (Table 1). The reactivity of silyl enol ethers derived from cyclic ketones was influenced by the ring size (entries 8–10). While large membered ring compounds **1i** and

^{*}Corresponding author. Tel.: +81 22 795 6812; fax: +81 22 795 6811; e-mail: yama@mail.pharm.tohoku.ac.jp

[†]Tohoku University, 21st Century COE Program CRESCENDO, Sendai, Japan.

Table 1. α, α -Diethynylation reaction of silyl enol ether

OSiMe ₃		2,6-di(<i>t</i> -l	GaCl ₃ (1 eq) Bu)-4-Mepyridine (1 eq)	SiEt ₃
Cl────SiEt ₃ ── 2 (6 eq)		chl	chlorobenzene, 150 °C		SiEt ₃
Entry	Substrate		Product	Time/h	Yield/%
	OSiMe ₃ RR		R SiEt ₃ R SiEt ₃		
1	$\mathbf{R} = n$ -Bu		a	5	48
2	R = Me		b	5	25
3	R = Et		c	5	42
4	$\mathbf{R} = n \cdot \mathbf{C}_9 \mathbf{H}_{19}$		d	5	36
5	$\mathbf{R} = i$ -Pr		e	5	35
6	$\mathbf{R} = \mathbf{P}\mathbf{h}$		f	5	23
7	OSiMe₃ ↓ → <i>n</i> -Pr		$g \xrightarrow{O}_{n-Pr}^{SiEt_3}$ SiEt ₃	5	42
		Ме ₃	SiEt ₃		
8	n = 1		h	1.5	6
9	n = 7		i	12	32 ^a
10	n = 1	0	j	5	30 ^b
^a 7i was obtained in 6% yield					

1j gave α, α -diethynylated ketones 3i and 3j in acceptable yields (entries 9 and 10), the reaction of 2-trimethylsiloxy-1-cyclohexene 1h gave 3h only in 6% yield (entry 8). Notably, small amounts of $\alpha, \alpha, \alpha', \alpha'$ -tetraethynylated ketones 7i and 7j were obtained in the former reactions.

Since GaCl₃ was regenerated by the β -elimination, the α, α -diethynylation reaction can in principle be catalytic. A mixture of **1a** and **2** (6 equiv) in chlorobenzene was heated at 150 °C with GaCl₃ (20 mol %) and 2,6-di-(*tert*-butyl)-4-methylpyridine (20 mol %) for 2 h giving

Scheme 4.

The products could be desilylated giving the parent α , α -diethynyl ketones. When **3a** and **3i** were treated with tetrabutylammonium fluoride (6 equiv) and acetic acid (2 equiv) in THF at 0 °C for 4 h, **8a** and **8i** were obtained both in 91% yields (Scheme 4).

It was noted that C–C bond cleavage occurred in the presence of an excess silyl enol ether. When **1a** (1.5 equiv) and **2** were reacted with GaCl₃ (1 equiv) and 2,6-di(*tert*-butyl)-4-methylpyridine (1 equiv) at 150 °C for 5 h, **3a** was obtained in 11% (based on **2**), which was accompanied by 1-triethylsilyl-3,3-di(triethyl-silylethynyl)-1-heptyne **9** in 43% yield (based on **2**). The product **9** should be formed via deacylation of **3a** by nucleophiles such as silyl enol ether or chloride, which was followed by the ethynylation of the organogallium intermediate **10** (Scheme 5).¹⁰

The above results suggested that α, α -ethenylation could also proceed using GaCl₃ by reacting silyl enol ethers with a silylated acetylene.⁶ Silyl enol ether **1a** (1.5 equiv) and **4** were reacted with GaCl₃ (1 equiv) and 2,6-di(*tert*butyl)-4-methylpyridine (1 equiv) in chlorobenzene at 150 °C for 45 min. Then the reaction was quenched with water, and the ¹H NMR analysis of the mixture showed the presence of α -(γ -gallio- γ -silylethenyl)- α -silylethenyl ketone **11a** in 41% yield, δ 6.09 (d, 1H, J = 19 Hz), 5.90 (d, 1H, J = 19 Hz), and 6.24 (s, 1H). When the mixture was treated with 6 M HCl in THF for 2 h, 5,5-bis(2-triethylsilylethenyl)-6-undecanone **5a** was obtained in 40% yield.¹¹ The α, α -diethenylation reaction could be applied to several silyl enol ethers (Table 2).

To summarize, α -monosubstituted silyl enol ethers reacted with a chlorosilylacetylene in the presence of GaCl₃ and 2,6-di(*tert*-butyl)-4-methylpyridine giving α, α -diethynylated ketones. When a silylated acetylene was reacted, α, α -diethenylated ketones were obtained. These reactions provide carbonyl compounds possessing highly functionalized quaternary α -carbon centers.

Scheme 5.

Table 2. α, α -Diethenylation of silyl enol ether

Acknowledgement

The authors thank JSPS for financial supports.

References and notes

 Reviews: House, H. O. In *Modern Synthetic Reactions*; Breslow, R., Ed.; W. A. Benjamin, INC: Menlo Park, CA, 1972, Chapter 9; Caine, D. In *Comprehensive Organic Synthesis*; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 3, Chapter 1.1. Mekelburger, H. B.; Wilcox, C. S. In *Comprehensive Organic Synthesis*; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, Chapter 1.4.

- Millard, A. A.; Rathke, M. W. J. Org. Chem. 1978, 43, 1834; Dubois, J. E.; Saumtally, I.; Lion, C. Bull. Soc. Chim. Fr. 1982, 318; Inoue, Y.; Toyofuku, M.; Taguchi, M.; Okada, S.; Hashimoto, H. Bull. Chem. Soc. Jpn. 1986, 59, 885; Aranda, A.; Diaz, A.; Diez-Barra, E.; Hoz, A. de la; Moreno, A.; Sanchez-Verdu, P. J. Chem. Soc., Perkin Trans. 1 1992, 2427.
- Omum, S. G. V.; Cook, J. M. Tetrahedron Lett. 1996, 37, 7185.
- Jorgenson, M. J.; Clark, T. J. J. Am. Chem. Soc. 1968, 90, 2188.
- 5. Wilt, J. W.; Niinemae, R. J. Org. Chem. 1979, 44, 2533.
- Arisawa, M.; Miyagawa, C.; Yoshimura, S.; Kido, Y.; Yamaguchi, M. Chem. Lett. 2001, 1080; Also see: Yamaguchi, M.; Tsukagoshi, T.; Arisawa, M. J. Am. Chem. Soc. 1999, 121, 4074; Arisawa, M.; Akamatsu, K.; Yamaguchi, M. Org. Lett. 2001, 3, 789; Arisawa, M.; Miyagawa, C.; Yamaguchi, M. Synthesis 2002, 138.
- Amemiya, R.; Fujii, A.; Arisawa, M.; Yamaguchi, M. J. Organomet. Chem. 2003, 686, 94; Also see: Arisawa, M.; Amemiya, R.; Yamaguchi, M. Org. Lett. 2002, 4, 2209.
- Amemiya, R.; Nishimura, Y.; Yamaguchi, M. Synthesis 2004, 1307. We also developed an ethynylation reaction of ketones using a catalytic amount of trialkylgallium: Nishimura, Y.; Amemiya, R.; Yamaguchi, M. Tetrahedron Lett., in press.
- 9 Under an argon atmosphere, a solution of GaCl₃ (1.0 M, 0.5 mmol) in methylcyclohexane (0.5 mL) was added dropwise to a mixture of 1a (121 mg, 0.5 mmol), 2 (524 mg, 3.0 mmol), and 2,6-di(tert-butyl)-4-methylpyridine (103 mg, 0.5 mmol) in chlorobenzene (2 mL) at room temperature. The mixture was stirred for 5 h at 150 °C, and after being cooled to room temperature, water was added. The organic materials were extracted with ether. The combined organic layers were washed with 2 M HCl and brine, dried over MgSO₄, and concentrated. The residue was purified by flash column chromatography (hexane/ethyl acetate = 100/1) to give **3a** (107 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 0.58 (12H, q, J = 8.0 Hz), 0.89 (6H, q, J = 7.2 Hz), 0.98 (18H, t, J = 8.0 Hz), 1.25-1.41 (6H, m), 1.47-1.54 (2H, m), 1.62 (1H, quint, J = 6.8 Hz), 1.81–1.85 (2H, m), 2.91 (2H, t, J = 7.2 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 4.5, 7.6, 14.1, 22.6, 22.7, 24.3, 27.5, 31.4, 37.2, 38.4, 49.4, 86.3, 104.2, 202.5. IR (neat) 2166, 1735, 727 cm⁻¹. MS (EI) m/z 446 (M⁺, 57%), 87 (M⁺-C₂₂H₃₉Si₂, 100%). HRMS Calcd for C₂₇H₅₀OSi₂: 446.3400. Found: 446.3399.

- 10. Amemiya, R.; Suwa, K.; Toriyama, J.; Nishimura, Y.; Yamaguchi, M. J. Am. Chem. Soc. **2005**, *127*, 8252.
- 11. Under an argon atmosphere, a solution of GaCl₃ (1.0 M, 1.0 mmol) in methylcyclohexane (1.0 mL) was added dropwise to a mixture of 1a (363 mg, 1.5 mmol) and 4 (140 mg, 1.0 mmol) in chlorobenzene (2 mL) at room temperature. 2,6-Di(*tert*-butyl)-4-methylpyridine (205 mg, 1.0 mmol) was added, and stirring was continued for 45 min at 150 °C. After cooling to room temperature, THF (2 mL) and 6 M HCl (10 mL) were added, and the mixture was stirred for 2 h at room temperature. The organic materials were extracted with ether. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated. The residue was purified by

flash column chromatography (hexane/ethyl acetate = 100/1) to give **5a** (90 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ 0.58 (12H, q, J = 8.0 Hz), 0.86 (6H, t, J = 7.2 Hz), 0.93 (18H, t, J = 8.0 Hz), 1.05–1.35 (6H, m), 1.49 (2H, quint, J = 7.2 Hz), 1.72–1.83 (2H, m), 2.37 (2H, t, J = 7.2 Hz), 5.67 (2H, d, J = 19.2 Hz), 6.19 (2H, d, J = 19.2 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 3.4, 7.3, 13.8, 13.9, 22.5, 23.3, 24.1, 26.5, 31.5, 35.5, 39.1, 65.0, 128.3, 148.1, 210.4. IR (neat) 2954, 1710, 1604, 1458, 1415, 1377, 1237, 999, 787, 720 cm⁻¹. MS (EI) m/z 450 (M⁺, 73%), 421 (M⁺-C₂H₅, 9%), 379 (M⁺-C₅H₁₁, 60%), 335 (M⁺-C₆H₁₅Si, 50%), 115 (M⁺-335, 100%). HRMS Calcd for C₂₇H₅₄OSi₂: 450.3713. Found: 450.3722.